
Flow of spatially non-uniform suspensions.
Part I: Phenomenology

M. Marchioro, M. Tanksley, A. Prosperetti*, 1

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

Received 19 August 1998; received in revised form 1 June 1999

Abstract

The response of a spatially non-uniform suspension of spheres to several forcing agents Ð forces and
torques applied to the spheres, and an imposed simple shear Ð is studied numerically for Stokes ¯ow
conditions. While the standard results are recovered in the uniform case, it is found that the non-
uniformity of the particle probability distribution gives rise to qualitatively new features. For example,
the rheological behavior of the system cannot be described solely in terms of an e�ective viscosity; a
relative velocity between particles and ¯uid can arise; the particles can either lead or lag the local
angular velocity of the ¯uid elements. It is shown that a mixture e�ective viscosity can be calculated for
all three cases with mutually consistent results. In a subsequent paper the present results will be used to
derive in a systematic way closure relations for an averaged-equations description of the
suspension. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The central di�culty in the derivation of averaged equations for disperse multiphase ¯ow is
the so called closure problem: any form of averaging leads to more unknowns than the
available equations and, therefore, some of the information lost in the averaging process must
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be reintroduced. No systematic way of achieving this objective has been devised save for a few
simple and highly restricted cases such as spatially periodic systems (see e.g. Hasimoto, 1959;
Sangani and Acrivos, 1982, 1983; Zuzovsky et al., 1983; Nunan and Keller, 1984; Sangani and
Yao, 1988) or dilute suspensions (see e.g. Batchelor, 1972; Hinch, 1977; Acrivos et al., 1980;
Biesheuvel and Spoelstra, 1989).2 Aside from a handful of notable exceptions (Feuillebois,
1984; Lhuillier, 1992; Lhuillier and NozieÁ res, 1992; Buyevich, 1995; Buyevich and Ustinov,
1995), a fundamental restriction in all previous studies on this topic is the assumption of
spatial uniformity of the system. While this assumption may be useful when the macroscopic
length scale is much larger than the particle scale, there are situations where it is clearly
insu�cient such as in the transition region between the clear ¯uid and the suspension, when
particles accumulate in certain ¯ow structures such as vortices and wall layers, and others. But,
more importantly, spatial uniformity eliminates many, if not all, terms containing derivatives
and therefore has a profound e�ect on the mathematical structure of the resulting equations.
The very familiar problem of lack of hyperbolicity of most averaged equations models (see e.g.
Stewart and Wendro�, 1984; Jones and Prosperetti, 1985) stems from the uncertainties
clouding the proper formulation of these di�erential terms.
In the present paper and its sequel (Marchioro et al., 2000, hereafter referred to as Part II)

we describe a method by which the direct numerical simulation of some prototypical physical
problems, in combination with an e�ective form of averaging, may be used to help ®nd the
correct closure relations. While we con®ne ourselves to the case of Stokes ¯ow at the particle
scale, the method that we describe has a wider applicability, e.g. to potential ¯ow and heat
conduction (Marchioro and Prosperetti, 1999). Furthermore, Stokes ¯ow at the local scale does
not imply Stokes ¯ow on the global macroscopic scale (see e.g. Feuillebois, 1984), and
therefore the constitutive relations that we derive in Part II are applicable to a rather broad
range of phenomena.
The results obtained in this paper are a necessary step for the derivation of those presented

in Part II, but are also of interest in themselves as they illustrate the many qualitatively novel
aspects in which a non-uniform suspension di�ers from a uniform one. Examples are a proof
of the non-Newtonian nature of the mixture stress, a non-zero inter-phase slip velocity in
simple shear ¯ow, and the appearance of mean vorticity in sedimentation. In Part II, we shall
introduce in a systematic way constitutive relations that are capable of accounting for these
aspects of suspension behavior.
In addressing the problem of non-uniform suspensions one faces the di�culty that most of

the usual approaches are either severely limited (e.g., to the dilute case) or downright
inadequate (e.g., those that appeal to physical intuition mostly based on the behavior of one or
two particles). Nonuniformity is an issue precisely because its e�ects are di�cult to anticipate
by physical intuition. Numerical methods are, therefore, necessary to deal with the problem.
Several approaches to simulate general ¯ows at both zero (see e.g. Brady and Bossis, 1988;
Weinbaum et al., 1990; Cichocki et al., 1994; Nott and Brady, 1994; Chang and Powell, 1994a,
1994b; Sangani et al., 1996; Ladd, 1997) and ®nite (see e.g. Unverdi and Tryggvason, 1992;

2 The literature on the subject is quite extensive and we limit ourselves to a few representative papers. Further-
more, no references are given to the large literature based on more or less ad hoc approximations.
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Feng et al., 1994; Tezduyar and Mittal, 1994; Johnson and Tezduyar, 1996, 1997; Kaftori et
al., 1995a, 1995b; Pan and Banerjee, 1996; Hu, 1996; Esmaeeli and Tryggvason, 1996)
Reynolds numbers are available, but they are not suitable to isolate speci®cally the e�ects of
spatial non-uniformities as their e�ectiveness Ð almost by de®nition Ð consists in their ability
to account simultaneously for the entire multi-faceted complexity of the ¯ow. For our purposes
the most promising techniques are those developed for in®nitely extended, spatially uniform
mixtures (see e.g. Mo and Sangani, 1994, 1996; Ladd, 1988, 1990, 1993). In this paper, we
describe a method that extends these powerful procedures to the non-uniform case.
At present our simulation program is somewhat limited by the available computational

resources and, therefore, the numerical results that we present are not as accurate as it would
be desirable. Nevertheless, the methods that we describe are of general validity and ready to be
used to re®ne the present results when better hardware and software will become available.
The present study is based on the completely random hard-sphere probability distribution

well known e.g. in the theory of the liquid state (see e.g. Allen and Tildesley, 1987; Hansen and
McDonald, 1990; Balucani and Zoppi, 1994). This probability distribution is not entirely
realistic for a ¯owing suspension (see e.g. Batchelor and Green, 1972; Zuzovsky et al., 1983;
Brady and Morris, 1997). Nevertheless, we believe that the present results are interesting for a
number of reasons. In the ®rst place, these are the ®rst results to show the di�erence between
homogeneous and non-homogeneous suspensions. As such, they are of considerable interest in
themselves. It may be expected that, qualitatively, many of our conclusions would hold
irrespective of the type and magnitude of non-uniformity. Secondly, as will be shown in Part II
of this study, our method will make it possible to systematically derive closure relations for the
averaged equations the functional form of which, again, may be expected to be relatively
robust with respect to the underlying probability distribution. A more realistic probability
distribution will undoubtedly change the value of the closure coe�cients (e.g., the e�ective
viscosity), but would not be expected to drastically alter the structure of the closure relations.
Thirdly, these are the ®rst results to show that the e�ective viscosity of a random suspension is
a robust ¯ow property, that has the same numerical value for a number of di�erent ¯ow
situations.

2. Some considerations on numerical simulation methods

A signi®cant fraction of the literature on suspensions or, more generally, composites,
attempts to characterize their behavior in terms of e�ective properties such as mixture viscosity
(see e.g. Batchelor, 1970; Batchelor and Green, 1972; Nunan and Keller, 1984; Martys et al.,
1994) or e�ective thermal conductivity (see e.g. Je�rey, 1973; Sangani and Acrivos, 1983;
Torquato, 1987; Sangani and Yao, 1988; Bonnecaze and Brady, 1991; Buyevich and Ustinov,
1995). Although the terms that describe these e�ects ultimately appear in the averaged
equations in a di�erential form, such e�ective properties may be calculated by assuming a
spatially uniform particle distribution using techniques similar to those developed in the kinetic
theory of gases (see e.g. Chapman and Cowling, 1952; Landau and Lifshitz, 1969; Cercignani,
1988).
A powerful numerical technique is available to deal with such situations: an in®nite uniform
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suspension is approximated by the periodic repetition of a fundamental cell in which particles
are randomly distributed. Numerically, this amounts to carrying out the simulation in a ®nite
box with periodic boundary conditions (see e.g. Sangani and Yao, 1988; Mo and Sangani,
1994, 1996; Ladd, 1988, 1990, 1993). While powerful, this approach can only work for a subset
of special terms that enter the averaged equations as the divergences of suitable ¯uxes. As will
be seen later, and in particular in Part II, not all the required di�erential terms have this
nature.
As mentioned in the previous section, other methods exists for the simulation of (relatively

simple) actual ¯ows. Of course, non-zero gradients Ð e.g. in the velocity ®eld Ð exist in such
¯ows, but their usefulness for the speci®c purpose of developing closure relations is somewhat
limited. The typical approach is to postulate closure relations and to show that solutions of the
averaged equations thus generated match the averages of the direct numerical simulation
results (see e.g. Nott and Brady, 1994). While of course useful, such an approach is, ®rst of all,
not systematic and, secondly, it has to rely on the e�ects of spatial non-uniformities to be large
enough to emerge above the statistical noise of the simulations. Thus, some e�ects may be
missed because their magnitude happened to be small in the particular situation simulated.
Thirdly, in an actual ¯ow, gradients are seldom spatially uniform and this complicates even
further the identi®cation of their e�ects. While not completely immune from these limitations,
the method that will be described below appears to represent an improvement or, at least, a
useful complement to this class of numerical simulation techniques.
A rather straightforward way to extend the periodic cell method previously mentioned to

deal, for example, with a non-uniform spatial distribution of the disperse phase would be to
retain the spatial periodicity in two directions but to give it up in the third one. One could
stack many planes, each containing two-dimensional cells, at di�erent distances from each
other so as to generate a spatial gradient in the direction normal to the planes. Such an
approach is feasible, but it is severely limited by the large increase in computational cost, the
presence of `end e�ects' of uncertain magnitude and, more importantly, by the fact that the
maximum gradient achievable in practice, while still satisfying the separation of micro- and
macro-scale constraint, is so small as to render problematic the unambiguous determination of
its e�ects.
These considerations point to the necessity of a new approach to the problem that we

describe in Section 5 after a brief exposition of the averaging techniques (Section 3), and their
application to the momentum equation (Section 4). In Section 6, we develop a form of the
averaged ®elds in terms of quantities that are calculated numerically in Sections 8±10. Some
details on the computations are given in Section 7.

3. Averaging

Some of the average quantities of interest, such as the mean particle velocity, are very
directly related to the corresponding microscopic variables and can readily be obtained from
the results of the numerical simulations. Other average quantities, however, are intrinsically
macroscopic constructs that have no direct counterpart at the microscopic level. A typical
example is the mixture stress which does not exist at the microscopic level, while it plays an
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essential role at the macroscopic one. Such purely macroscopic quantities are the result of
averaging procedures applied to the microscopic equations. Their explicit expression in terms
of microscopic variables, which is evidently needed to compute them, necessarily requires
therefore the explicit use of a speci®c averaging procedure. Here, we use an ensemble-based
phase averaging method that has been developed speci®cally for this purpose. A detailed
description is given in our earlier papers (Zhang and Prosperetti, 1994a, 1994b, 1997;
Prosperetti, 1998). Here, we only provide a few basic relations to which it will be necessary to
refer below.
In the absence of inertial e�ects, for N equal homogeneous spherical particles, the ¯ow is

uniquely determined once the con®guration CN Ð i.e., the position of the centers ya, a �
1,2, . . . ,N of the N particles Ð is given. The probability density of the con®guration CN is
denoted by P�N �:
In terms of the characteristic functions wC,D�x;N � for the continuous (subscript C ) or

disperse (subscript D ) phases, the phase ensemble average of the generic quantity fC,D
pertaining to either phase is de®ned by

bC,DfC,D �
1

N!

�
dCN P�N�wC,D�x;N�fC,D�x;N�, �1�

where bC,D are the volume fractions de®ned by this same equation with fC,D � 1: Here and in
the following the explicit indication of time dependence is suppressed. Since the particle-¯uid
interfaces have zero measure

bC � bD � 1: �2�

For a generic quantity g�a� pertaining to the ath particle as a whole (such as the center-of-mass
velocity) we use a particle average de®ned by

n�x� �g�x� � 1

N!

�
dCN P�N�

"XN
a�1

d
ÿ
xÿ y�a�

�
g�a��N�

#
, �3�

where n is the particle number density de®ned by this same equation with g�a� � 1:

n�x� � 1

N!

�
dCN P�N�

"XN
a�1

d
ÿ
xÿ y�a�

�#
: �4�

If averaged quantities vary slowly over distances comparable to the particle radius, accurate to
second order in the ratio a/L of the particle radius to the macroscopic length scale L, one has

bD � v

�
1� a2

10
r2

�
n, �5�

where v � 4
3pa

3 is the particle volume.
Upon assuming the ¯uid to be incompressible, averaging of the microscopic equation of

continuity leads to
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@bC
@t
� r � ÿbChuci

� � 0, �6�

and, similarly,

@bD
@t
� r � ÿbDhuDi

� � 0, �7�

where uC,D are the velocities of the phases. In view of Eq. (2), adding Eqs. (6) and (7) we ®nd

r � um � 0, �8�
where the mean volumetric ¯ux um is de®ned by

um � bChuCi � bDhuDi: �9�
or, from Eq. (1),

um � 1

N!

�
dCN P�N��wC�x;N�uC�x;N� � wD�x;N�uD�x;N�

�
: �10�

Expressing the conservation of particle number

@n

@t
� r � �n Åw� � 0, �11�

requires the velocity ®eld Åw which is de®ned as the particle average (3) of the center-of-mass
velocity of the particles wa: In general, Åw 6� huDi but, analogously to Eq. (5), it can be shown
that, accurate to second order in the ratio a=L,3

bDhuDi �
�
1� a2

10
r2 � a4

280
r4

�
�nv Åw� � a2

5

�
1� a2

14
r2

�
r � �nv ÅOOO� �12�

where �OOO is the particle-average angular velocity.

4. Averaged momentum equations

Upon incorporating the body force into a modi®ed pressure, the Stokes equations for the
continuous phase may be written as

r � sssC � 0, �13�
where the stress sssC is given by

sssC � ÿpCI� 2mCeC, �14�

3 In some of the problems to be considered here Åw is found to increase proportionally to L2, and this circumstance
reduces the accuracy of this equation from fourth to second order.
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in terms of the (modi®ed) pressure pC, identity two-tensor I, viscosity mC, and rate of
deformation tensor eC: It is shown in Zhang and Prosperetti (1997) that, since eD vanishes for
rigid spheres, the ensemble average of eC is exactly

heCi � 1

bC
Em �15�

where

Em � 1

2

�
rum � �rum�T

�
�16�

is the rate of deformation tensor based on the mean volumetric ¯ux (9). With this result, the
average continuous-phase stress is therefore

bChsssCi � ÿbChpCiI� 2mCEm: �17�
Because of the ®nite extent of the particles, averaging and di�erentiation do not commute.
However, when the particles are small in comparison with the macroscopic length so that
a=L� 1, one has (Zhang and Prosperetti, 1994a, 1997; Prosperetti, 1998)

r � ÿbChsssCi� � bChr � sssCi � nA�sssC � ÿ r �
ÿ
bDL�sssC �

�
, �18�

where, approximately,

bDL�sssC � � nT�sssC � � r �
�
nS�sssC � � r �

ÿ
nR�sssC � � � � �

�	
: �19�

The quantities introduced in these equations are most usefully expressed in terms of particle
averages as follows:

A�sssC ��x� �
�
jrj�a

dSr sssC�x� rjx� � n, �20�

T�sssC ��x� � a

�
jrj�a

dSr n
�
sssC�x� rjx� � n�, �21�

S�sssC ��x� � ÿ1
2
a2
�
jrj�a

dSr nn
�
sssC�x� rjx� � n�, �22�

R�sssC ��x� � 1

6
a3
�
jrj�a

dSr nnn
�
sssC�x� rjx� � n�: �23�

These forms are particularly useful for numerical computation as will be seen below. In
particular, one recognizes A as the average hydrodynamic force acting on the particles.
By using Eqs. (17) and (18) in the momentum equation (13), we ®nd the averaged

continuous phase momentum equation in the form
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r � ÿÿ bChpCiI� 2mCEm � bDL�sssC �
� � nA�sssC �: �24�

When inertia is negligible, the mean momentum balance for the particles evidently has the
form�

jrj�a
dSr sssC�x� rjx� � n� v�rD ÿ rC�g � 0, �25�

where rC,D are the phase densities and g is the acceleration of gravity. Since the integral in this
equation is precisely equal to A, this quantity may be eliminated from Eq. (24) with the result

r � ÿÿ bChpCiI� 2mCEm � bDL�sssC �
� � ÿnv�rD ÿ rC�g: �26�

The quantity under the divergence sign in Eq. (26) has the physical meaning of a mixture
stress. In a recent paper (Marchioro et al., 1999) we have given a detailed study of this
quantity identifying the contribution that is to be considered as the mixture pressure pm and
separating it from the viscous part of the stress. The result of that analysis (based on a study
of the transformation properties of the stress tensor under gauge transformations of the
microscopic pressure pC� is

pm � bChpCi �
�
1� a2

10
r2

��
n�x�vpe�� 1

5
a2r �

"
n�x�

�
jrj�a

dS � ÿ n�pC
#

� 1

14
a2rr:

"
n

�
jrj�a

�
nnÿ 1

3
I

�
pC

#
, �27�

where

pe � 1

4pa2

�
jrj�a

dSr pC
ÿ
ya � r;N

�
, �28�

is the average pressure over the particle surface. For a spatially uniform mixture, using Eq. (5),
we see that this result may be written as

pm � bChpCi � bDpe, �29�
which is an expression that has been proposed before (Prosperetti and Jones, 1984). The
quantity pe has also been introduced before by several authors (see e.g. Ishii, 1975; Drew,
1983). Eq. (27) generalizes this form to the inhomogeneous case.
The remainder of the mixture stress (i.e. the quantity under the divergence sign in Eq. (26)),

after subtraction of pmI is to be identi®ed with the viscous mixture stress which we write as
2mCEm � SSSP, where the contribution of the particles is

SSSP �
ÿ
pm ÿ bChpCi

�
I� bDL�sssC �: �30�

With the de®nitions (27) and (30), the momentum equation (26) becomes
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r � ÿÿ pmI� 2mCEm � SSSP

� � ÿnv�rD ÿ rC�g, �31�

5. Periodic cell model for a non-uniform suspension

To introduce the present technique for the generation of a suitable non-uniform ensemble, it
is useful to review ®rst the way in which the periodic cell method is used for the direct
numerical simulation of unbounded suspensions (see e.g. Sangani and Yao, 1988; Mo and
Sangani, 1994). The central idea is to approximate the suspension by ®lling the whole space
with replicas of a fundamental (e.g. cubic) cell containing N identical spheres randomly
distributed according to a uniform probability P0.

4 With this construct, the (microscopic)
continuous-phase velocity ®eld can be written in the form

uC�x;N� � U1�x� � ÄuC�x;N�, �32�
where U1, is an imposed deterministic velocity ®eld and ÄuC is periodic in the three directions
perpendicular to the faces of the fundamental cell. The disperse-phase velocity ®eld decomposes
in a similar way:

uD�x;N� � U1�x� � ÄuD�x;N�, �33�
with, as before, ÄuD periodic.
Since the system is uniform, every ®eld is equal to its volume average and therefore, in

particular, the mean volumetric ¯ux (10) may be written

um � U1 � 1

N!

�
dCN P0�N�

�
1

V

�
d3x

ÿ
wC ÄuC � wD ÄuD

��
: �34�

For each con®guration, the quantity in brackets is just the volume average of the periodic part
of the exact `microscopic' volumetric ¯ux for that con®guration and can readily be calculated.
The remaining integration in con®guration space is e�ected in practice by generating a large
number of di�erent con®gurations and averaging the volume-averaged volumetric ¯ux over
them, which is e�ectively a form of Monte Carlo integration. Con®gurations are generated by
arranging the N spheres randomly in the fundamental cell. The factor N! corresponds to a
renumbering of the particles and can simply be ignored.
A relation such as (34) increases the rate of convergence to the mean and reduces the

calculation of an average quantity Ð that, according to the original de®nition (1), would be
quite laborious Ð to much more readily computable volume averages. This is a central feature
which it is essential to retain in the non-uniform case as well so as to make the calculation of
ensemble averages practical. To this end, we keep the concept of the in®nite repetition of a
fundamental cell but use a suitable non-uniform particle probability distribution. The way in
which this probability distribution is generated can be explained as follows.

4 From now on, N will denote the number of particles in the fundamental cell rather than the total number of par-
ticles in the system.
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Consider a volume DV of the con®guration space of the system. The fraction of systems of
a uniform ensemble contained in DV is given by�

DV
dCN P0�N�, �35�

where P0 is the uniform probability distribution introduced before. Subject now the center ya

of each sphere to a small displacement ya4yaÿ EF�ya�, where F is a given deterministic vector
function and E a small parameter. The fraction of systems in DV then becomes�

DV
dCN P0�N� � E

�
DS

dCN P0�N�N �
 XN

a�1
F
ÿ
ya�!

�
�
DV

dCN P0�N�
"
1� E

XN
a

ra � F
ÿ
ya
�#

, �36�

where N is the unit normal in phase space outwardly directed with respect to the surface DS
of DV, the divergence theorem has been used to obtain the second form, and ra denotes
di�erentiation with respect to the coordinate ya of the ath particle. We thus see that the
ensemble generated by the displacement of the particles has the probability density5

P�N� � P0

�
1� EF�N�

�
, �37�

where

F�N� �
XN
a�1
ra � F

ÿ
ya�: �38�

This is of course a well-known result in the theory of probability. Its utility here is twofold. In
the ®rst place, it enables us to obtain a speci®c non-uniform probability density P�N � starting
from the readily generated uniform probability P0�N �: Secondly, Ð and more importantly Ð
the presence of the small parameter E enables us to readily identify in all the equations the
terms due to the spatial nonuniformity of the suspension. The key role played by this feature
will become apparent in the following.
In order for P�N � to be periodic it is necessary that F have the same spatial periodicity as

the fundamental cell. We take

r � F�y� � sin k � y �39�
where the direction of k is along one of the sides of the fundamental cell and its modulus k
equals 2p divided by the length L of the side of the cell in that direction. With this choice
average quantities, while not constant, can be represented over the fundamental cell by a
Fourier series, the coe�cients of which are given by projections, i.e. volume integrals, over

5 It is evident that, by construction, the non-uniform probability P satis®es the same normalization as P0.
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suitable basis functions. In fact, the relation (34) itself can be interpreted as one such
projection. In this way the calculation of ensemble averages is reduced to the calculation of
volume integrals over the fundamental cell just as in the spatially uniform case.
It would be possible, of course, to choose functions F with spatial frequencies greater than

the fundamental one taken in Eq. (39). We do not pursue this possibility for reasons of
simplicity Ð to limit the number of Fourier coe�cients Ð and also because we are interested
here in small values of ka as will be seen below.
Upon inserting Eq. (39) into the de®nition (4) of particle number density, we ®nd

n�x� � n0 � Enssin k � x� Enccos k � x� � � � , �40�
with

n0 � N

V
, �41�

ns � 2

V

1

N!

�
dCN P0�N�F2�N�, nc � 2

V

1

N!

�
dCN P0�N�F�N�

XN
a�1

cos k � ya: �42�

The second integral vanishes and, for the ®rst one, a simple calculation gives

ns � n0
L3

SN�k� �43�

where SN is the static structure factor for N hard spheres de®ned by (see e.g. Allen and
Tildesley, 1987; Balucani and Zoppi, 1994)

SN�k� � 1� n0

�
d3r
�
gN�r� ÿ 1

�
exp ik � r, �44�

in which gN�r� is the pair distribution function of the N spheres.
Similarly to Eq. (40), we have

bD � b0D � EbsDsin k � x, �45�
where we have dropped the vanishing contribution proportional to cos k � x; here

b0D � N
v

V
, �46�

and, from Eq. (5),

bsD �
�
1ÿ a2k2

10

�
vns: �47�

For convenience in the manipulations that follow, let

Es � Esin k � x, Ec � Ecos k � x, �48�
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and note that

rEs � kmEc; rEc � ÿkmEs, �49�
where

m � k

k
, �50�

is a unit vector in the direction of the nonuniformity of the particle distribution. A truncated
Fourier series expansion similar to Eq. (40) will be used for all the ®eld variables; for example

Åw � w0 � Esws � Ecwc �51�

6. Mean pressure and volumetric ¯ux in a periodic suspension

Our intent in this paper is to study the average value of the ¯ow quantities in suspensions in
which the particles are arranged according to a speci®c probability distribution. The
calculation of particle averages, such as the mean particle velocity Åw or the mean particle
angular velocity �OOO, from the results of the numerical simulation is of course completely
straightforward. The calculation of continuous-phase averages, such as huCi, hpCi, or quantities
related to them, such as the volumetric ¯ux um or the mixture pressure pm, on the other hand,
is more di�cult. Mo and Sangani (1994) give an explicit expression for um for the uniform case
(their Eq. (69)), that they obtain by an application of the divergence theorem. Unfortunately,
the same method does not work in the present non-uniform case and a direct calculation is
more involved. We present such a calculation in another paper (Tanksley et al., 1999), both in
view of its intrinsic interest and as a check on the present results, but here we follow a more
direct route that is based on the averaged momentum equation (31). The basis of this
calculation is the Fourier-series structure of all the average quantities expected when the
ensemble is constructed as described in the previous section.
We study three distinct physical situations, but it will be su�cient to present details for the

®rst one only.

6.1. Sedimentation

In the ®rst ¯ow that we simulate, the motion of the particles is induced by a body force g.
Under the action of this force, in a quiescent ¯uid, an isolated particle would move with a
velocity W given by

W � 2

9
a2
rD ÿ rC

mC
g �52�

We use this relation to eliminate the vector g in the following equations.
Upon taking the divergence of the momentum equation (31), recalling that r � um � 0

because both phases are incompressible, and the sinusoidal dependence (40) of the particle

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831794



number density n, we ®nd

r2pm � rr:SSSP � 9

2a2
mCkb

sEcW �m: �53�

where bs � vns: Write

1

mC
SSSP � L0 � EsLs � EcLc, �54�

and note that rr:L0 � 0 since r � L0 is the divergence of the stress for a uniform suspension
and is therefore a constant. The quantities Ls,c will be suitably parameterized and, as several
others introduced later, calculated numerically. The solution of Eq. (53) is then6

1

mC
pm � b0D

9

2a2
W � xÿ 9

2ka2
bsEcW �m�m � �LsEs � LcEc� �m, �55�

where the ®rst term (to which this expression reduces for E � 0), is found from a consideration
of the momentum equation (31) in the special case of a uniform suspension (see Mo and
Sangani, 1994).7

Upon substituting this expression into Eq. (31) and solving, one ®nds the following result for
the mean volumetric ¯ux:

um ÿ U1 � �Iÿmm� �
�

9

2k2a2
bsEsW� 1

k
�LsEc ÿ LcEs� �m

�
, �56�

where U1 is the volumetric ¯ow rate of the suspension averaged over planes perpendicular to
m. One could eliminate this vector by explicitly adopting a speci®c frame of reference.
However, in order to exhibit the frame invariance of our results, we prefer not to do so.
The expressions for pm and um may be made more de®nite by observing that there are two

fundamental vectors, W and m, that can be combined to give the equivalent pair

Wk � �W �m�m, W? � �Iÿmm� �W: �57�
Since there would be no motion for W � 0 (i.e., g � 0), and since the problem is linear, the
velocity ®elds must depend linearly on these vectors. By a similar argument, the fundamental
two-tensors available to express SSSP are

GW
S �W?m�mW?, GW

A �W?mÿmW?,

GW
I � �W �m�I, GW

M � �W �m�
�

mmÿ 1

3
I

�
: �58�

6 In principle, we should write pm ÿ P1 where P1 is the pressure ®eld corresponding to U1: For the U1 con-

sidered here, however, P1 is a constant and, since pm is de®ned up to a constant by construction (see Marchioro et
al., 1999), this is unnecessary.
7 The tensor L0 in this case is evidently isotropic and is represented by the ®rst term in (55).
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We can therefore write, with the superscript j � s or c,

kL j � ` j
SGW

S � ` j
AGW

A � ` j
I GW

I � ` j
MGW

M, �59�
where the factor k has been introduced so as to make the coe�cients `j dimensionless. These
coe�cients will be found numerically in the manner described in Section 7. It should be
expressly noted that the validity of relations such as Eq. (59) is critically dependent on the
absence of privileged directions in space other than those identi®ed by m and W. In particular,
if the particle probability distribution function were characterized by one or more intrinsic
vectors or tensors, the structure of Eq. (59) would be di�erent.
With Eq. (59), we readily ®nd

um ÿ U1 � 1

k2a2

�
9

2
bsEc ÿ LcEs

�
W?, �60�

1

mC
pm � b0D

9

2a2
W � x� 1

ka2

�
PcEc �

�
`sI �

2

3
`sM

�
Es

�
�Wk �m�, �61�

where, we have set

L j � ` j
S � ` j

A, Pc � `cI �
2

3
`cM ÿ

9

2
bs, �62�

for brevity.
Two important quantities involving gradients of um are the mixture vorticity

r � �um ÿ U1� � ÿ 1

ka2

�
ÿ 9

2
bsEc � LsEs � LcEc

�
m�W?, �63�

and the rate of strain of the volumetric ¯ux (16):

Em � 1

2

�
rum � �rum�T

�
: �64�

From Eq. (60), we ®nd8

Em � 1

2ka2

�
9

2
bsEc ÿ LsEs ÿ LcEc

�
GW

S : �65�

Upon substituting the relations (59) into the expression (54) of the particle stress SSSp we have

1

mC
SSSP � 2Em � 1

ka2

�
9

2
bsEc ÿ `cAEc ÿ `sAEs

�
GW

S �
1

ka2

X
s,c

�
` j
AGW

A � ` j
I GW

I � ` j
MGW

M

�
Ej: �66�

8 Again, as in Eq. (55), in the left-hand side we should write Em ÿ E1, where E1 is the rate of strain of the vel-
ocity ®eld U1: For simplicity, we omit this term that vanishes when, as here, U1 is a rigid-body motion.
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We shall need expressions similar to Eqs. (60) and (61) for other variables as well. Thus, we set

Åwÿ U1 � F
�
b0D
�

W� 1

k2a2

X
j�s,c

�
w j
?W? � w j

kWk
�
Ej, �67�

where F is the concentration-dependent hindered settling function for a homogeneous
suspension, i.e. the ratio between the particle settling velocity at the volume fraction bD and
the settling velocity W of an isolated particle (see e.g. Hetsroni, 1982; Davis and Acrivos, 1985;
Russell et al., 1989). As a consequence of this de®nition, F�0� � 1: Similarly we set

ÅOOOÿ OOO1 � 1

ka2

X
j�s,c

o jEjm�W?, �68�

where OOO1� 1
2r � U1: The coe�cients w and o are all dimensionless. Finally, for the average

continuous-phase pressure, we write

1

mC
hpCi � Q0 � b0D

9

2a2
W � x� 1

ka2
ÿ
qcEc � qsEs

��Wk �m�, �69�

where Q0 is the absolute level with respect to that of pm:
All the dimensionless coe�cients `, w, o, q introduced here and in the remainder of this

section can be computed numerically from the results of the direct numerical simulations. The
analysis of the terms proportional to Es and Ec, which, by construction, would vanish in the
case of a uniform suspension, will reveal the fundamental qualitative di�erences introduced by
the spatial nonuniformity of the system. The manner in which these calculations are carried
out is summarized in Section 7.

6.2. Simple shear

The second ¯ow we study is induced by an imposed shear, for which

U1 � ggg � x, �70�
where ggg is a symmetric traceless constant two-tensor specifying the rate of shear. Note that aggg
has the same dimensions as W. Since inertia is neglected, an arbitrary rigid motion can be
added to the right-hand side of Eq. (70) and will be understood in the following. From the
tensor ggg and the vector m, one can form two linearly independent vectors analogous to Eq.
(57):

gggk � �m � ggg �m�m, ggg? � ggg �mÿ �m � ggg �m�m: �71�
The possible two-tensors are

ggg, Gg
S � ggg?m�mggg?, Gg

A � ggg?mÿmggg?, Gg
I �

ÿ
gggk �m

�
I,

Gg
M �

ÿ
gggk �m

��
mmÿ 1

3
I

�
:

�72�
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The last four are analogous to Eq. (58) of the previous case, while the ®rst one is speci®c for
the present situation of imposed shear. Because of this di�erence, in this case we ®nd

L0 � `0aggg, �73�
while the other relations are similar to Eqs. (59)±(69):

kL j � ` j
g aggg� ` j

SaGg
S � ` j

AaGg
A � ` j

I aGg
I � ` j

MaGg
M, �74�

um ÿ U1 � 1

k2a
�LsEc ÿ LcEs�ggg?, �75�

1

mC
pm � 1

ka

��
`cI �

2

3
`cM � `cg

�
Ec � PsEs

�ÿ
gggk �m

�
, �76�

L j � ` j
S � ` j

A � ` j
g , Ps � `sI �

2

3
`sM � `sg, �77�

Em � gggÿ 1

2ka
�LsEs � LcEc�Gg

S, �78�

1

mC
SSSP � 2Em �

ÿ
2� `0

�
gggÿ ÿ`sAEs � `cAEc�Gg

S �
1

ka

X
s,c

�
` j
AG

g
A � ` j

I G
g
I � ` j

MG
g
M

�
Ej: �79�

Åwÿ U1 � 1

k2a

X
j�s,c

�
w j
?ggg
? � w j

k ggg
k
�
Ej, �80�

ÅOOO � 1

ka

X
j�s,c

o jEjm� ggg? �81�

1

mC
hpCi � Q0 � 1

ka

X
j�s,c

Q jEj
ÿ
gggk �m

�
: �82�

6.3. Applied couple

For the third ¯ow that we simulate, each particle is subject to a couple T, under the action
of which an isolated particle would rotate with the angular velocity
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ooo � 1

6vmC
T, �83�

with respect to the ¯uid. Note that aooo and W have the same dimensions.
One can form two axial vectors:

oook � �ooo �m�m, ooo? � �Iÿmm� � ooo: �84�
The fundamental two-tensors are

Go
S � �m� ooo�m�m�m� ooo�, Go

A � �m� ooo�mÿm�m� ooo�: �85�
Proceeding again as before,

kL j � ` j
SaGo

S � ` j
AaGo

A: �86�

um ÿ U1 � 1

k2a
�LsEc ÿ LcEs�m� ooo, �87�

L j � ` j
S � ` j

A, �88�

Em � ÿ 1

2ka
�LsEs � LcEc�Go

S , �89�

1

mC
SSSP � 2Em � 1

ka

"
ÿ ÿ`sAEs � `cAEc�Go

S �
X
s,c

` j
AEjG

o
A

#
: �90�

Åwÿ U1 � 1

k2a

X
j�s,c

w j
?Ejm� ooo �91�

ÅOOOÿ OOO1 � C
�
b0D
�
ooo� 1

ka

X
j�s,c

h
o j
kooo
k � o j

?ooo
?
i
Ej �92�

where C is the hindrance function for rotation (see Brenner, 1970, 1972, 1984).
In the previous two cases we had parameterized pm in terms of a scalar constructed from the

polar vector characterizing the ¯ow (W or gggk� dotted into m. In this case, since the only polar
vector is m� ooo, a parallel procedure would give zero and therefore we expect that pm � 0,
which is con®rmed by the numerical results.

6.4. Non-Newtonian nature of a non-homogeneous suspension

By comparing the expressions for Em given in Eqs. (65), (78) and (89) with the
corresponding expressions for the viscous stress (66), (79) and (90), we recognize that a
proportionality relation between the two quantities as required by a Newtonian rheological
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behavior would only be possible if all the coe�cients of the summations in (66), (79) and (90)
vanished. The numerical evidence to be discussed in Sections 8±10 shows unambiguously that
this would happen only in the case of a uniform suspension. This argument, therefore, proves
that the stress in the mixture can be represented in a Newtonian fashion with an e�ective
viscosity only in the random uniform case. For non-uniform suspensions the constitutive
relation will necessarily be more complex. This matter is addressed more fully in Part II.
For the reason noted after Eq. (59), this conclusion is only valid because we have explicitly

ruled out the presence of privileged directions in space associated to the microstructure of the
suspension. It is well known that, if such directions existed, also a uniform suspension would
exhibit non-Newtonian behavior.

7. Numerical method

The present study exhibits several computational aspects that will now be brie¯y described in
turn.

7.1. Con®gurations

The ensemble of con®gurations used in the direct numerical simulation was generated
according to a standard Metropolis algorithm (see e.g. Allen and Tildesley, 1987). One starts
with the particles arranged in a regular array inside the fundamental cell. Random
displacements are then generated for each particle, with the particle actually moved only if the
displacement does not cause it to overlap with a neighboring particle. This procedure was

Fig. 1. Comparison of the pair distribution function based on a typical ensemble used in this work (circles) with the
solution of the Percus±Yevick equation. The ensemble consists of 2,000 con®gurations for bD � 35% and 51

particles.
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implemented in two ways. In the ®rst one, the scale of the random displacements was
dynamically adjusted so that approximately 50% of all attempted moves was accepted. After
allowing for an initial transient of the order of 106 displacements per particle, the ensemble
was constructed by storing the con®gurations of the N particles every 20,000 to 100,000 steps
per particle. A greater number of steps was taken at the larger volume fractions and particle
numbers. The second procedure consisted in adjusting the scale of the displacement so that the
acceptance rate was about 90%, which corresponds to approximately one half of the mean
interparticle distance. Con®gurations were stored after 30,000 to 90,000 displacements per
particle. These numbers were su�cient to give rise to an approximately Gaussian distribution
of particle displacements with a mean equal to one-half the size of the cell. To avoid biases,
particles were displaced in random order rather than in a ®xed sequence.

As a randomness test of the ensembles of con®gurations, we have compared the pair
distribution function g�r� (where r is the distance from the center of the test particle) for our
ensembles with solutions of the Percus±Yevick equation (Throop and Bearman, 1965). Typical
results obtained with 2,000 con®gurations for bD � 35% and 51 particles are shown in Fig. 1.
The Percus±Yevick solution (line) extends to the largest abscissa considered by Throop and
Bearman, while the present results (open circles) reach nearly as far as the cell size which, with
the present parameters, is L=2a ' 4:24: The close agreement between theory and computations
supports the good quality of the ensembles used in this work.

As a further test, we calculated the nearest-neighbor distribution function Ep for our
con®gurations (open circles in Fig. 2) and compared it with the approximate theoretical
result of Torquato and Lee (1990). The result of this comparison for the same case of
Fig. 1 is shown in Fig. 2 and again supports the randomness of our ensembles.

Finally, for each ensemble, we can calculate the static structure factor SN from Eq. (44). It is

Fig. 2. Nearest-neighbor distribution function for the same ensemble as in the previous ®gure (open circles)
compared with the approximate theoretical result of Torquato and Lee (1990).
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known that the di�erence between SN and the corresponding quantity S for an in®nite number
of particles is of order 1/N (see e.g. Salacuse et al., 1996), which is a relatively small number in
the present calculations. Hence, we can compare our SN with a suitable approximate
expression for S. We choose the form given by Studart et al. (1996):

S�k� � 2ak

2ak� 24b0Df
�
b0D
�
j1�2ak�

�93�

where j1 is a spherical Bessel function and

f
�
b0D
�
� 1

8b0D

�
1

S�0� ÿ 1

�
: �94�

For S�O�, we take the higher order Carnahan±Starling approximation (see e.g. Hansen and
McDonald, 1990; Mo and Sangani, 1994)

S�0� �
�
1ÿ b0D

�4
1� 4b0D � 4

�
b0D
�2
ÿ4
�
b0D
�3
�
�
b0D
�4 : �95�

A comparison between our SN (symbols) and S�k� (lines) given by Eqs. (93) and (95) is shown
in Fig. 3 for b0D � 15% (triangles), 25% (circles), and 35% (squares) with N between 16 and
64.
For a given set of particle arrangements, the e�ective number of con®gurations in the

ensemble can be increased by suitably orienting the forcing (force, shear, or couple). The force

Fig. 3. Static structure factor S as a function of ka for bD � 15% (triangles), 25% (bullets), and 35% (squares),
compared with the approximate expression given by Studart et al. (1996), Eq. (93).
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and couple cases are characterized by a vector quantity, g or T, that we take, in turn, parallel
to the three sides of the fundamental cell for a given particle arrangement. For the case of
simple shear, we have ®ve independent traceless symmetric tensors of the form

gA

0@ 1 0 0
0 ÿ1 0
0 0 0

1A,
0@ 0 1 0
1 0 0
0 0 0

1A etc: �96�

Thus, in the case of applied force and couple, this procedure e�ectively multiplies by 3 the
number of con®gurations, while in the shear case it multiplies it by 5. An additional factor is
gained in some other cases. For instance, by orienting the vector m in the two possible
directions orthogonal to g, we e�ectively double the number of con®gurations that contribute
to the coe�cients of terms proportional to W?, and similarly for the shear and couple cases.

7.2. Stokes ¯ow solution

Given the particle distribution for each con®guration and the imposed velocity ®eld U1, the
Stokes equations are solved by the singularity method of Mo and Sangani (1994). Our
computer code was essentially a rewrite of the original code that was kindly made available to
us by Prof. Sangani. The capability to calculate several other quantities, such as the integrals
over the particle surfaces appearing in the de®nition (27) of pm, was also added to the original
code.
The solution is expressed in two complementary ways. A global form, useful to handle the

particle±particle interactions, consists of the superposition of singularities centered at the
particle centers. This global solution is coupled to local solutions, valid in the neighborhood of
each particle, taken to have the Lamb (1932) form.
In the implementation of the method the user speci®es the number of singularities used in

the global solution and the number of terms retained in the Lamb series solution. The
magnitude of the computational e�ort increases rapidly with the number of terms retained. We
have mostly used ®ve singularities and, in a few cases, six. Comparing the results we have
found that ®ve singularities are su�cient for an accurate solution up to a volume fraction of
25±30%. At 35%, ®ve singularities lead to a loss of accuracy for some coe�cients and,
therefore, there is the possibility that some of our results at bD � 35% are not fully converged.
Unfortunately, the computational resources available did not permit us to further re®ne these
results.

7.3. Calculation of particle averages

The procedure used to calculate the particle averages, de®ned in (3), can be illustrated with
reference to the average center-of-mass velocity Åw: We write

n�x� Åw�x� � Äw0 � Äwssin k � x� Äwccos k � x, �97�
where, from Eq. (3), the ®rst Fourier coe�cient in the right-hand side is given by
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Äw0 � 1

V

�
d3x n�x� Åw�x�

� n0
�

dCN P0�N�
�
1� ef�N�� 1

N

XN
a�1

wa�N�

� w0
0 � ew0

e , �98�
where the last step follows simply by separating the O�1� and O�E� terms of the integral and we
have used Eq. (41) to write 1/V as n0=N: Similarly

Äws � n0
�

dCN P0�N�
�
1� ef�N�� 1

N

X
a�1

wa�N�sin k � ya � ws
0 � ews

e, �99�

with a corresponding expression for Äwc: Upon substituting into Eq. (97), we thus have

n�x� Åw�x� � w0
0 � ew0

e �
ÿ
ws

0 � ews
e

�
sin k � x� ÿwc

0 � ewc
e

�
cos k � x: �100�

The numerical evidence indicates that w0
e , ws

0, and wc
0 are negligible. While we have not been

able to prove that they exactly vanish (at least in the limit of an in®nitely large ensemble), one
would indeed expect that they would. For example, w0

e could be non-zero only if there were a
statistical correlation between the sum of sines in f�N � as de®ned in Eq. (38) and

P
a wa: Since

the term sin k � ya of f depends on the position of the a particle, while wa depends, in addition
to the applied deterministic force, on the position of the other particles, and since the particles
are uncorrelated (except for the no-overlap constraint) it would be di�cult to ®nd a
mechanism by which such a statistical correlation could be established. Similarly, since P0�N �
is random, a non-zero value for ws

0 or wc
0 would indicate a non-random bias in the distribution

of
P

a wa�N �sin k � ya which, again, would not be expected. If we, therefore, accept that these
quantities are exactly zero, and express n in the left-hand side of this relation by means of Eq.
(40) (recalling that nc � 0), we may write

Åw�x� � 1

n0 � nsesin k � x
ÿ
w0

1 � ews
esin k � x� ewc

ecos k � x�
� w0 � ewssin k � x� ewccos k � x�O�E2�, �101�

where

w0 � w0
1

n0
, ws � we

s

n0
ÿ w0

1

n0
ns

n0
, wc � we

c

n0
ÿ w0

1

n0
ns

n0
: �102�

Note that all the quantities in these relations are known numerically.
A similar procedure is followed for the other particle averages, and in particular for the

tensors L0, Li de®ned in Eq. (54) and the analogous relations for the shear and couple cases.
These quantities are ®rst expressed in terms of averages of the coe�cients of the Lamb solution
using the de®nitions (21)±(23) of T etc. Then these Lamb coe�cients averages are expanded in
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Fourier series and the relevant Fourier coe�cients evaluated as shown before for w.
Assembling the various components obtained in this way, L0, Ls and Lc are obtained.

7.4. Parameterization of the averages

By the same methods described in Marchioro and Prosperetti (1999), we have veri®ed that
the various parameterizations of the average quantities postulated in the previous section is
correct. For a simple example illustrating the procedure, consider once more the case of Åw
expanded as in Eq. (101).
For the sedimentation problem w must be linearly dependent on the driving force,

represented by W, and therefore, a priori, it is necessary that

w0 ÿ U1 �M0
�
b0D,ak

�
�W, �103�

where M0 is a two-tensor. The numerical results indicate that the o�-diagonal elements of M0

are 3±4 orders of magnitude smaller than the diagonal elements, which in turn di�er from each
other by a similar amount. Furthermore, the o�-diagonal elements ¯uctuate around 0 as ka is
varied.
From these results, we deduce that M0 is an isotropic tensor, M0 � FI, with F the hindered

settling function as in (67). This ®nding implies that the existence of preferential directions
parallel to the cell sides, introduced as an artifact of the simulation method, has a negligible
e�ect on the results.
The non-uniform coe�cients ws and wc must also be linearly related to W, but they must

only depend on the components of W parallel and perpendicular to m and therefore, for
example,

ws �Ms
?
�
b0D,ak

�
�W? �Ms

k
�
b0D,ak

�
�Wk, �104�

where, again, Ms
k, Ms

? are, a priori, two-tensors. Here, one ®nds numerically that the o�-
diagonal elements are about 1% of the diagonal ones, which in turn di�er from each other by
a similar amount. Due to the fact that the convergence of the ensemble averages for the non-
uniform quantities is slower than for the uniform ones Ð a feature which we have encountered
in all our calculations Ð the numerical evidence for the diagonal nature of the Ms is less
strong than for M0, but is nevertheless compelling. Thus, we identify the coe�cients ws

k, w
s
? of

Eq. (67) with the traces of Ms
k, Ms

?:
The procedure is conceptually similar but gets more cumbersome to implement in the case of

the two-tensors L0, L j: For example, the linear dependence of L j on the tensors GS, GA, etc.
as written in Eq. (59), a priori, should be expressed in terms of four-tensors. Within our
numerical accuracy, these are found to be scalars multiplied by the identity 4-tensor, from
which we deduce the coe�cients ` j:

7.5. Cell-size dependence

In an ideal implementation of the concept described in Section 5, one would superimpose a
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sinusoidal particle distribution upon a truly in®nite random suspension. This objective cannot
be of course attained in the context of the present method, where the size of the fundamental
cell plays a two-fold role: it imposes an arti®cial periodicity on the background, ideally
uniform, particle distribution and, at the same time, gives the scale of variation of the
inhomogeneity.
The situation of practical concern in which the macroscopic length scale is much greater

than the particle radius corresponds to the limit ka40: In this limit the particle distribution as
characterized by the probability P0 becomes truly uniform and, at the same time, the scale of
variation of the particle inhomogeneity becomes large and the associated gradients
correspondingly small. Nevertheless, we are still able to identify the e�ects of the
inhomogeneity as they are singled out by the parameter E:
For each volume fraction several ensembles with di�erent numbers of particles were

generated so as to vary the value of the parameter ka expressing the ratio of the particle radius
a to the cell size 2p=k: For N particles, and a particle volume fraction of bD, ka is given by

ka �
�
6p2

N
bD

�1=3

, �105�

and is therefore a slowly decreasing function of N. In general, we used between 16 and 64
particles for each value of bD: The values of ka that we could practically attain were, therefore,
in the range between 0.5 and 1. Notice that the number of particles necessary to attain a given
ka increases with bD: For bD � 15%, in some cases as few as 9 particles in the cell gave results
consistent with those found with larger numbers of particles at the same volume fraction.

8. Results: sedimentation

We describe in this and in the following sections some of the qualitative aspects in which a
non-uniform suspension di�ers from a uniform one as revealed by the ensemble averaging of
the direct numerical simulation results according to the non-uniform probability distribution
(37). Before considering the non-uniform case, it is useful to begin from an analysis of the E-
independent terms of the formulae in Section 6 which embody the results for a uniform
suspension. A comparison of these results with those available in the literature will help
validate our method and will also make it easier to appreciate the novel phenomenology
introduced by spatial non-uniformities.
It follows from (67) and (56) that, in a uniform suspension, the mean sedimentation velocity

of the particles with respect to the volumetric ¯ow rate um is

Åwÿ um � F
ÿ
bD
�
W: �106�

In our numerical simulation the hindrance function F depends, in addition to the volume
fraction, also on ka. Mo and Sangani (1994) give for this dependence an expression that is
valid up to the ®rst order in the ratio of the two-particle correlation length to the cell size:
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F
�
b0D,ka

�
� F

�
b0D,0

�
ÿ 1:7601

�6p2�1=3
mC
meff

S�0�ka�O�ka�3, �107�

where S�0� is the structure factor. Typical results for F�b0D,ka� from our simulations at
b0D � 15, 25, and 35% are shown in Fig. 4 as functions of ka. Here, as in all the ®gures that
follow, the triangles are for b0D � 15%, the bullets for b0D � 25%, and the rectangles for b0D �

Fig. 4. Numerically computed hindrance settling function as a function of ka for bD � 15, 25, and 35%.

Fig. 5. Values of the numerically computed hindrance settling function of the previous ®gure extrapolated to ka � 0
as a function of bD: The line is the ®t (108).
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35%: From a linear ®t, shown by the lines, to these and similar numerical results obtained at
other volume fractions, one can extrapolate to ka � 0 with reasonable con®dence. The result of
this procedure is shown in Fig. 5 and can be correlated by an expression of the form

F
�
b0D,0

�
�
�
1ÿ b0D

�c1ÿc2b0D
, �108�

with c1 � 6:50, c2 � 3:18: For small b0D this gives F�b0D� ' 1ÿ 6:50b0D in good agreement with
Batchelor's (1972) well-known result F�bD,0� � 1ÿ 6:55b0D: Fits of the form F � �1ÿ b0D�n do
not give an equally good representation of the numerical result.
From the straight-line ®t to the data of Fig. 4, according to Eq. (107), one can also deduce a

value for S�0�mC=meff and therefore, knowing S�0�,meff=mC: If S�0� is taken to be given by the
Carnahan±Starling approximation (95), we ®nd the results shown by the squares in Fig. 6; the
other symbols will be discussed below. The solid line in the ®gure is a ®t of the form (Barnes et
al., 1989; Phillips et al., 1992)

meff

mC
�
 
1ÿ b0D

bmax

!ÿy
, �109�

with bmax � 0:79, y � 1:94, to results described in the next section. This curve is consistent with
the results of Mo and Sangani (1994) and others in the literature. The values of meff deduced
from Eq. (107) agree reasonably well with the line given by Eq. (109) for bD � 15%, but they
deviate for increasing bD where the two-particle correlation length ceases to be small in
comparison with the cell size.

Fig. 6. The normalized e�ective viscosity of the suspension meff=mC as a function of particle volume fraction as
computed for several ¯ows: q, from Eq. (107); w, from Eq. (134); r, from Eq. (135); ^, from Eq. (160). The solid
line in the ®gure is the ®t of Eq. (109).
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For a uniform suspension the di�erence pm ÿ hpCi as given by Eq. (69) is

pm ÿ hpCi � ÿmCQ0: �110�
Our numerical simulations consistently give for Q 0 numbers of the order of 10ÿ4±10ÿ5, to be
compared e.g. with pm=mC which is typically a number of order 1. We can therefore conclude
that

Q0 � 0, �111�
which entails that, for a uniform suspension, pm � hpCi � pe:
Feuillebois (1984) studied the settling of a dilute suspension with a spatial concentration

consisting of a vertically varying sinusoidal component superimposed on a uniform distribution
n 0. His result for the particle settling velocity may be written in the form

wÿU1
jWj � 1ÿ 6:55vn0 � SF�ka�v

�
n�x� ÿ n0

�
, �112�

where SF is a function of ka de®ned in his paper.9 Our expression (67) can be put in a similar
form, namely

wÿU1
jWj � F

ÿ
n0v,ka

�
� ws

k
vnsk2a2

v
�
n�x� ÿ n0

�
�113�

Fig. 7. Feuillebois's result for vSF(ka ), valid as b0D40 (long dashes) compared with the present numerical results at
b0D � 15% (triangles), 25% (bullets), and 35% (squares). The short-dashed line is an extrapolation of our numerical

results to b0D � 0:

9 We use the symbol SF to denote the same function denoted by S in Feuillebois's paper to avoid confusion with
the static structure factor introduced earlier.
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In Fig. 7, we show as a function of ka Feuillebois's result for the function SF�ka� (long dashes)
and our numerical results for the analogous quantity multiplying v�n�x� ÿ n0� at three volume
fractions. These quantities are not directly comparable in this form in view of the strong bD
dependence. However, we can use our results to extrapolate to zero volume fraction and then
compare with Feuillebois's. To this end, we write

ws
k

vnsk2a2
� c1

�
1ÿ b0D

�c2�c3b0D
, �114�

and evaluate the ®tting constants c1, c2, c3 by using the computed results for b0D � 15, 25, and
35%. Since, in Feuillebois's work, the sinusoidal disturbance is superimposed on a truly
random uniform distribution while, in the present one, it is superimposed on the arti®cially
periodic structure of the in®nitely repeated fundamental cells, the two situations are not
precisely comparable. Nevertheless, there is a general agreement between Feuillebois's result
and ours (short dashes).
The numerical simulations indicate that all the coe�cients ` with superscript s vanish. Like-

wise, we ®nd wc
? � wc

k � 0: The previous equation (60) then becomes

um ÿ U1 � 1

k2a2
U sEsW?, �115�

where

U s � 9

2
bs ÿ ÿ`cS � `cA�, �116�

which shows that um di�ers from the volumetric ¯ow rate of a uniform suspension U1 only

Fig. 8. The coe�cient U s appearing in Eq. (115) versus ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares) together with least-squares ®ts of the form (117).

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831810



when the inhomogeneity is perpendicular to W, i.e. the particles are arranged in vertical sheets
of alternatively denser and lighter concentration. This result has an obvious physical
interpretation. A graph of the coe�cient U s versus ka is shown in Fig. 8 for b0D � 15, 25, and
35%, where the lines represent least-squares ®ts of the form

U s � g� d�ak�2: �117�
Since g 6� 0, it is clear from Eq. (115) that um ÿ U1 diverges as ka40 when W? 6� 0 i.e. when
the inhomogeneity is perpendicular to the driving force. This fact is expected as, in this case,
the region of heavier mixture becomes wider and wider with decreasing k while the shear force
that tends to retard its motion remains constant.10 The result is supported by the analytical
one given in Appendix A for the dilute case.
The representation (67) for the disperse-phase velocity becomes

Åwÿ U1 � F
�
b0D,ka

�
W� 1

k2a2

�
ws
?W? � ws

kW
k
�
Es: �118�

Since ws
? and ws

k=k
2a2 tend to constants in the limit k40, we ®nd numerically the same

divergence for Åw as noted before for um provided W? 6� 0: An important physical quantity is
the relative or `slip' velocity

uD � Åwÿ um �119�
that must be a Galilean invariant. It is important to verify this property, and all the more so as

Fig. 9. Ratio jumj=j Åwmj as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35% (squares).

10 One may visualize the situation as a series of vertical heavy "slabs" of more concentrated suspension. The fall of
the slabs is retarded by the viscous force on their surfaces. As ka is decreased, the width Ð and hence the weight Ð
of the slabs increases, but the retarding viscous force does not.
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the two velocities in the right-hand side individually diverge in the limit of small k. Such a
comparison is shown in Fig. 9 in the form of the ratio U s=ws

?: Least-squares ®ts of the form
(117) extrapolated to ka � 0 all di�er from 1 by only a few percent, which is of the order of
the expected numerical accuracy in these simulations. For this reason the lines shown in this
®gure are of the form 1� d�ka�2 � z�ka�4 with the parameters d,z obtained from a least-squares
minimization. It is seen that this procedure provides a good representation of the numerical
results. On the basis of this result, we write

uD � F
ÿ
bD,ka

�
W�

�
uskW

k � us?W?
�
Es, �120�

where

usk �
ws
k

k2a2
, us? �

1

k2a2
ÿ
ws
? ÿU s

�
: �121�

The quantities us? and usk are shown in Figs. 10 and 11; note that they both approach nonzero
constants as ka40: In this case the lines are three-term quadratic ®ts including the linear term
ak.
The expression (61) for the mean pressure is

1

mC
pm � b0D

9

2a2
W � x� 1

ka2
PcEc�Wk �m�: �122�

The numerically calculated value of Pc is plotted in Fig. 12 for the three cases b0D � 15, 25,
and 35% as function of ka. The lines are a three-term quadratic ®t. Since Q0 � 0, the disperse-
phase pressure hpCi given by Eq. (69) reduces to

Fig. 10. The coe�cient us? in Eq. (120) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are a three-term quadratic ®t.
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1

mC
hpCi � b0D

9

2a2
W � x� 1

ka2
qcEc�Wk �m�: �123�

From Eqs. (122) and (123), we have therefore

1

mC
hpCi ÿ b0D

9

2a2
W � x � zp

�
1

mC
pm ÿ b0D

9

2a2
W � x

�
, �124�

Fig. 12. The coe�cient Pc in Eq. (122) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are a three-term quadratic ®t.

Fig. 11. The coe�cient usk in Eq. (120) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are a three-term quadratic ®t.
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where

zp �
qc

Pc
: �125�

This quantity is shown in Fig. 13 as a function of ka for several values of b0D: If the results are
®tted as in Eq. (117), for ka � 0 one ®nds a limit value that is essentially 1 and independent of
b0D: If the suggested independence of b0D is correct, the exact result for ka � 0 should be the
same as the dilute-limit one given in Appendix A, i.e. 1. The lines in Fig. 13 are biquadratic ®ts
forced to reduce to 1 for ka � 0: It is evident that, if zp deviates from 1 for ®nite ka, for a non-
uniform suspension the mean pressure acting on the surface of the particles di�ers from the
continuous-phase mean pressure.
In the frame of reference where U1 � 0, the mean angular velocity of the particles and the

vorticity of the suspending ¯uid are both zero for a uniform suspension, but not for a non-
uniform one. The numerical evidence indicates that os � 0, and Eq. (68) therefore becomes

ÅOOOÿ OOO1 � 1

ka2
ocEcm�W?: �126�

Since, from Eq. (57), m�W? � m�W, this equation shows that there is a non-zero mean
particle rotation normal to the �W,m� plane induced by the concentration gradient in the
direction orthogonal to the settling velocity, a fact that admits of a ready physical
interpretation. The coe�cient oc is plotted in Fig. 14.
From Eq. (115), we see that the concentration gradient also induces a mean vorticity and we

®nd the relation

ÅOOOÿ OOO1 � zO

�
1

2
r � um ÿ OOO1

�
, �127�

Fig. 13. The coe�cient zp de®ned in (124) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are biquadratic least-squares ®ts subject to the condition that zp � 1 at ka � 0:
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where

zO �
2oc

U s
: �128�

This quantity is shown as a function of ka in Fig. 15. As in the case of zp considered before,
the lines are ®tted requiring that zO � 1 for ka � 0, as suggested by the dilute-limit analysis of

Fig. 14. The coe�cient oc of Eq. (126) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are least-squares ®ts of the form (117).

Fig. 15. The coe�cient zO de®ned in Eq. (127) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are biquadratic least-squares ®ts subject to the condition that zO � 1 at ka � 0:
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Appendix A. Thus, the mean particle angular velocity relative to the mean vorticity vanishes in
the limit of a uniform suspension as expected. Furthermore, as for uD, the divergence in the
mean particle angular velocity as ka40 is exactly cancelled by a similar divergence of the
mean vorticity. We de®ne a slip angular velocity:

OOOD � ÅOOOÿ 1

2
r � um, �129�

that can be expressed as

OOOD � kOcEcm�W?, �130�

where

Oc � 1

k2a2

�
oc ÿ 1

2
U s

�
�131�

tends to a nonzero constant as ka40 as shown in Fig. 16. The slip translational and rotational
velocities de®ned here, together with similar quantities de®ned for the other two problems, will
play an important role in Part II when we close the system of equations.
The expressions (65) and (66) for the mixture rate of strain and stress tensors are

Em � 1

2ka2
U sEcGW

S , �132�

Fig. 16. The coe�cient Oc de®ned in Eq. (130) as a function of ka for b0D � 15% (triangles), 25% (bullets), and
35% (squares). The lines are least-squares ®ts of the form (117).
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1

mC
SSSP � 2Em � 1

ka2

�
9

2
bs ÿ `cA

�
GW

S Ec � 1

ka2

ÿ
`cAGW

A � `cMGW
M � `cIGW

I

�
Ec: �133�

The ®rst term in the right-hand side of this relation is proportional to 2Em and therefore
de®nes the e�ective viscosity of the suspension:

meff

mC
� lim

ka40

9

2
bs ÿ `cA
U s

: �134�

The results given by this formula are shown by the circles in Fig. 6, where they are seen to be
in excellent agreement with the solid line which represents the e�ective viscosity calculated in
the usual way by studying a homogeneous suspension subject to simple shear as described in
the next section.

9. Results: simple shear

As remarked at the end of Section 6, for a uniform particle distribution (for which E � 0),
the mixture possesses a stress±strain relation of the Newtonian type with an e�ective viscosity
that can readily be written down upon comparing Eqs. (78) and (79):

meff

mC
� 1� 1

2
`0: �135�

Fig. 17. The black symbols are the numerical results for the e�ective viscosity as de®ned in Eq. (135). Triangles are

for b0D � 15%, circles for b0D � 25%, and squares for b0D � 35%: The solid lines are least-squares ®ts that reduce to
a constant in this case. The open symbols are the right-hand side of Eq. (160) before taking the limit ka40: The
dashed lines are least-squares ®ts of form the (117).
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It can be shown analytically that this result coincides with the expression for the same quantity
given, e.g. by Batchelor (1970) and Mo and Sangani (1994).
This quantity, as calculated in the present simulations, is shown by the black symbols and

the solid lines as a function of ka for di�erent b0D in Fig. 17 (the dashed lines will be discussed
in the next section). The solid lines are least-squares quadratic ®ts which simply reduce to
constants showing that the result is independent of ka. The values of these constants, shown as
function of b0D in Fig. 6 (triangles), have been ®tted to an expression of the form (109) to
generate the solid line in this ®gure. These results have been obtained with ®ve singularities per
particle and di�er from those of Mo and Sangani (1994) by about 4%. We have done the same
simulations in a limited number of cases with 6 singularities ®nding a di�erence of only 1%.
Nunan and Keller (1984) have shown that, in a lattice, viscosity is a tensor given by an

isotropic part plus a non-isotropic term proportional to a single constant. We have veri®ed
that the non-isotropic part of our result decreased below 6% already for 25 particles in the
cell, and was less than 2% with more than 40 particles. These observations strengthen the
conclusions of Section 7 on the small e�ects of the arti®cial periodicity and cell-side directions
imposed by the present cell simulations. As in the previous case, we also ®nd Q0 � 0, so that
pm � hpci � pe for a uniform suspension.
Turning now to the non-uniform case, the numerical results indicate that all the coe�cients `

with superscript c vanish, and also ws
k � ws

? � 0: The situation is thus in some sense the
reciprocal of the one encountered in the case of sedimentation where all the `s coe�cients and
wc
k, w

c
? vanished. The expression for um becomes

um ÿ U1 � 1

k
UcEcggg?, �136�

Fig. 18. Coe�cient U c in Eq. (136) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35% (squares).
The lines are least-squares ®ts of the form (117).
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where

U c � 1

ka

ÿ
`sS � `sA � `sg

� �137�

which shows that um 6� U1 only when the inhomogeneity is perpendicular to ggg �m; U c, shown
in Fig. 18, tends to a nonzero constant as ka40: The corresponding expression for Åw is

ÅwÿU1 � 1

k2a

�
wc
?ggg
? � wc

kggg
k
�
Ec, �138�

with which we have the following expression for the slip velocity

uD � ka2
�
uc?ggg

? � uckggg
k
�
Ec, �139�

where

uc? �
1

k2a2

�
wc
?

ka
ÿU c

�
, uck �

1

k3a3
wc
k: �140�

The coe�cients uc? and uck are shown in Figs. 19 and 20. In spite of the numerical noise, these
results indicate a non-zero, if small, interphase slip.
The expression for the mean pressure reduces to

1

mC
pm � 1

ka
PsEs

ÿ
gggk �m

�
, �141�

Fig. 19. Coe�cient uc? in Eq. (139) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35% (squares).
The lines are least-squares ®ts of the form (117).
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while

1

mC
hpCi � 1

ka
qsEs

ÿ
gggk �m

�
, �142�

from which zp de®ned by Eq. (124) is

zp �
qs

Ps
: �143�

Fig. 21. The coe�cient Ps in Eq. (141) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35%
(squares). The lines are least-squares ®ts of the form (117).

Fig. 20. Coe�cient uck in Eq. (139) as a function of ka for b0D � 15% (triangles), 25% (bullets), and 35% (squares).
The lines are least-squares ®ts of the form (117).
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The quantities Ps and zp are graphed in Figs. 21 and 22; zp is ®tted as 1� d�ka�2 � z�ka�4 on
the basis of the same argument outlined after Eq. (125) for the sedimentation case. Note that
the scatter appears large chie¯y because of the small range of the vertical scale.
The mean angular velocity of the particles and the vorticity of the suspending ¯uid are both

zero for a uniform suspension, but not for a non-uniform one. We ®nd oc � 0 and, therefore,
we have a relation similar to Eq. (127) with

zO � ÿ
2os

U c
: �144�

This quantity is shown in Fig. 23 from which we see that indeed the ¯uid and solid particle
angular velocities are equal in the limit ka40: At ®nite ka, however, the rotation rate of the
particles di�ers from that of the ¯uid when the suspension is not uniform. Because zO41 as
ka40, the slip angular velocity can be expressed as

OOOD � k2a2OsEsm� ggg?, �145�

where

Os � 1

k2a2

�
os

ka
� 1

2
U c

�
, �146�

approaches a nonzero constant as ka40 as shown in Fig. 24.

Fig. 22. The coe�cient zp de®ned in Eq. (143) for the simple shear case as a function of ka for b0D � 15%

(triangles), 25% (bullets), and 35% (squares). The lines are biquadratic least-squares ®ts subject to the condition
that zp � 1 at ka � 0:
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10. Results: couple

For a uniform suspension, the particles rotate with an average angular velocity proportional
to the applied couple

ÅOOOÿ OOO1 � C
�
b0D
�
ooo, �147�

Fig. 24. The coe�cient Os de®ned in (146) as a function of ka for b 0
D=15% (triangles), 25% (bullets), and 35%

(squares). The lines are least-squares ®ts of the form (117)

Fig. 23. The coe�cient zO de®ned in (144) for the simple shear case as a function of ka for b 0
D=15% (triangles),

25% (bullets), and 35% (squares). The lines are biquadratic least-squares ®ts subject to the condition that zO=1 at
ka=0

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831822



where C�b0D� is the hindrance function for rotation (Brenner, 1970, 1972, 1984). A graph of
this quantity is shown in Fig. 25; the numerical results are ®tted by

C
�
b0D
�
�
�
1ÿ b0D

�c1ÿc2b0D
, �148�

where c1 � 1:50, c2 � 0:41: We ®nd that C depends only very weakly, if at all, on ka.
Dropping quantities found numerically to vanish, the necessary formulae can be written as

ÅOOOÿ OOO1 � C
�
b0D
�
ooo� os

k
ka

Esoook � os
?

ka
Esooo? �149�

um ÿ U1 � 1

k
UEc�m� ooo�, �150�

Åwÿ U1 � wc
?

k2a
Ec�m� ooo�, �151�

pm � pe � hpCi � 0, �152�
with

U � 1

ka

ÿ
`sS � `sA

�
: �153�

The slip angular velocity is

Fig. 25. Hindrance function for rotation, Eq. (147), as a function of b 0
D for a uniform suspension. The black circles

have been obtained on the basis of extensive simulations with variable number of particles and averages over
thousands of con®gurations. The open circles have been obtained with only 28 particles per cell averaging over 500
con®gurations. The solid line is the ®t (148).
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OOOD � C
�
b0D
�
ooo� ÿOkoook � O?ooo?

�
Es �154�

where

Ok � 1

ka
os
k, O? � os

?
ka
ÿ 1

2
U: �155�

Fig. 26. The coe�cient Ok in Eq. (154) as a function of ka for b 0
D=15% (triangles), 25% (bullets), and 35%

(squares). The lines are least-squares ®ts of the form (117)

Fig. 27. The coe�cient O_ in Eq. (154) as a function of ka for b 0
D=15% (triangles), 25% (bullets), and 35%

(squares). The lines are least-squares ®ts of the form (117)
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Figs. 26 and 27 show Ok and O? together with least squares ®ts of the form (117). It is
interesting to note that, whenever m � ooo 6� 0, the average particle angular velocity is not
parallel to the local vorticity 1

2r � um ÿ OOO1:
The slip velocity is given by

uD � ka2uEc�m� ooo�, �156�
where

u � 1

k2a2

�
wc
?

ka
ÿU

�
, �157�

which is shown in Fig. 28; the lines are quadratic ®ts of the form (117).
The strain rate is

Em � ÿ1
2
UEsGo

S , �158�

while, for the stress, we have

1

mC
SSSP � 2Em � ÿ 1

ka
`sAEsG

o
S �

1

ka
`sAEsG

o
A: �159�

As in Section 8, we then ®nd the following expression for the e�ective mixture viscosity:

meff

mC
� lim

ka40

`sA
kaU

: �160�

Fig. 28. The coe�cient u in Eq. (156) as a function of ka for b 0
D=15% (triangles), 25% (bullets), and 35%

(squares). The lines are least-squares ®ts of the form (117)
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The numerical results for `sA=kaU are shown by the open symbols and dashed lines in Fig. 17
as functions of ka. Note how close the limit values for ka40 are to those found for the simple
shear case in the previous section. These limit values correspond to the e�ective viscosity for
the present case and are shown by the diamonds in Fig. 6, where this agreement is con®rmed.

11. Conclusions

The purpose of this paper is to describe a method for the numerical ensemble averaging of
¯ow quantities for particular ¯ows of spatially non-uniform suspensions and to present results
illustrating the behavior of such systems. In Part II of this study, we shall build on these
results to derive in a systematic way constitutive relations that enable us to formulate averaged
equations models to describe such ¯ows.
Our results show that non-uniform suspensions behave very di�erently from uniform ones.

Among the principal results, we mention the following:

1. A method has been devised to calculate the e�ective viscosity of suspensions for the cases of
settling and rotation, in addition to the case of simple shear considered by earlier
investigators. Such a calculation can be carried out for settling and rotation only for a non-
uniform suspension. All three calculations give consistent results, which proves that the
concept of e�ective viscosity is a robust one, most likely independent of the particular
nature of the ¯ow.

2. While the stress tensor in a uniform suspension can be reduced to a Newtonian form with
an e�ective viscosity, this is not possible in the non-uniform case. The rheological behavior
of a non-uniform suspension is much more complex. A closure relation will be given in Part
II.

3. We have encountered cases in which the particle-mixture relative velocity does not vanish in
spite of the absence of external forces on the particles. Such results have obvious
implications for the well-known Ð and much debated Ð phenomenon of shear-induced
particle migration (see e.g. Leighton and Acrivos, 1987; Acrivos, 1995).

4. The average pressure ®eld in a suspension cannot be taken to equal the average continuous-
phase pressure. The near-®eld disturbance induced by the particles plays an essential role in
establishing the e�ective mixture pressure.

5. The settling or shearing of a non-uniform suspension causes a non-zero particle rotation
that contributes to the stress.

These results have been obtained assuming that the particles are randomly distributed hard
spheres. This is certainly a limitation as the particle distribution in a ¯owing suspension is
known to depend on the ¯ow. Nevertheless these are the ®rst results which speci®cally show
the major qualitative aspects in which a non-uniform suspension di�ers from a uniform one
and one may expect that qualitatively similar di�erences would exist also for a more realistic
particle distribution function.
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Appendix A. The dilute limit

Zhang and Prosperetti (1997) derive three momentum equations in the dilute limit: one for
the continuous phase,

0 � ÿbCrhpCi � bCrCg� bCr �
�
2mC

�
1� 5

2
bD

�
Em

�

�9bDmC
2a2
� Åwÿ huCi� ÿ 3

4
bDmCr2huCi

�3
4
mCr2

�
bD� Åwÿ huCi�

�� 3mCr �
�
bD

�
ÅOOOÿ 1

2
r � huCi

��
, �A1�

one for the linear momentum of the disperse phase,

0 � ÿbDrhpCi � 2mCbDr � EC ÿ 9mCbD
2a2
� Åwÿ huCi� � 3

4
mCbDr2huCi � bDrDg, �A2�

and one for the angular momentum of the disperse phase,

0 � 6bDmC

�
1

2
r � huCi ÿ ÅOOO

�
� nT �A3�

To express these momentum equations in terms of quantities used in the present paper, we
need two other relations from Zhang and Prosperetti (1997):

um � bChuCi � bDhuDi1bChuCi � bD Åw, �A4�
and

Em � EC � Symm
ÿr�bD� Åwÿ huCi�

��
: �A5�

Note that the dilute-limit equations in the form presented here are accurate to order k 0 for the
sedimentation problem and to order k for the shear and couple problems. Note also that
Zhang and Prosperetti (1997) did not incorporate the body force on the continuous phase into
a modi®ed pressure, as is done in the present paper. Adding the second and third equations to
the ®rst one, and dropping terms of higher order in bD and k, we obtain the following three
equations:
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0 � ÿ 1

mC
rhpCi � bD

2a2

9
W� r �

�
2

�
1� 5

2
bD

�
Em

�
� 3

4
r2
ÿ
bDuD

�� 3r � ÿbDooo�, �A6�

bDW � bD

�
uD ÿ a2

6
r2um

�
, �A7�

and

bDooo � bD ÅOOOD: �A8�
The solution to these equations is readily found in the three cases of sedimentation, simple
shear, and applied couple. In order to treat all three cases together, as in Sections 8±10, we set

bD � b0D � bsDEs �A9�

1

mC
hpCi � 9

2a2
p0W � x� pW

ka2
EcWk �m� pg

a
Esgggk �m �A10�

um � ggg � x� U s

k2a2
EsW? � U c

k
Ecggg? � U

k
Ecm� ooo �A11�

uD � u0W�
�
uskW

k � us?W?
�
Es � ka2

�
uckggg
k � uc?ggg

?
�
Ec � ka2um� oooEc �A12�

ÅOOOD � O0ooo� kOcEcm�W? � k2a2OsEsm� ggg? � ÿOkoook � O?ooo?
�
Es �A13�

We substitute these relations into the momentum equations and solve for the coe�cients. All
quantities not given explicitly are equal to zero.

Sedimentation �ggg � T � 0), p0 � b0CrC � b0DrD, pW � ÿ9b
s
D

2

�
1ÿ a2k2

6

�
,

U s � 9bsD
2

�
1ÿ a2k2

6

�
,

�A14�

u0 � 1�O
ÿ
bD
�
, usk � us? � Oc � O

ÿ
bD
�
: �A15�

Simple shear �g � T � 0), pg � 5bsD, Uc � 5bsD: �A16�

uck � uc? � Os � O
ÿ
bD
�
: �A17�

Applied couple �g � ggg � 0), U � 3bsD, O0 � 1�O
ÿ
bD
�
, �A18�

u � Ok � O
ÿ
bD
�
O? � O

ÿ
bD
�
: �A19�

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831828



References

Acrivos, A., 1995. Shear-induced particle di�usion in concentrated suspensions of non-colloidal particles. J. Rheol

39, 813±826.
Acrivos, A., Hinch, E.J., Je�rey, D.J., 1980. Heat transfer to a slowly moving ¯uid from a dilute ®xed bed of heated

spheres. J. Fluid Mech 101, 403±421.

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Clarendon Press, Oxford.
Balucani, U., Zoppi, M., 1994. Dynamics of the Liquid State. Clarendon Press, Oxford.
Barnes, H.A., Hutton, J.F., Walters, K., 1990. An Introduction to Rheology. Elsevier, Amsterdam.

Batchelor, G.K., 1970. The stress system in a suspension of force-free particles. J. Fluid Mech 41, 545±570.
Batchelor, G.K., 1972. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech 52, 245±268.
Batchelor, G.K., Green, J.T., 1972. The determination of the bulk stress in a suspension of spherical particles to

order c 2. J. Fluid Mech 56, 401±427.

Biesheuvel, A., Spoelstra, S., 1989. The added mass coe�cient of a dispersion of spherical gas bubbles in liquid. Int.
J. Multiphase Flow 15, 911±924.

Bonnecaze, R.T., Brady, J.F., 1991. The e�ective conductivity of random suspensions of spheres. Proc. Roy. Soc.

Lond A432, 445±465.
Brady, J.F., Bossis, G., 1988. Stokesian dynamics. Ann. Rev. Fluid Mech 20, 111±157.
Brady, J.F., Morris, J.F., 1997. Microstructure of strongly sheared suspensions and its impact on rheology and

di�usion. J. Fluid Mech 348, 103±139.
Brenner, H., 1970. Rheology of a dilute suspension of dipolar spherical particles in an external ®eld. J. Colloid

Interface Sci 32, 141±158.
Brenner, H., 1972. Suspension rheology in the presence of rotary Brownian motion and external couples:

elongational ¯ow of dilute suspensions. Chem. Eng. Sci 27, 1069±1107.
Brenner, H., 1984. Antisymmetric stress induced by the rigid-body rotation of dipolar suspensions. Int. J. Engng.

Sci 22, 645±682.

Buyevich, Yu.A., 1995. Interphase interaction in ®ne suspension ¯ow. Chem. Eng. Sci 50, 641±650.
Buyevich, Yu.A., Ustinov, V.A., 1995. E�ective thermal conductivity of a microscopically inhomogeneous

dispersion. Int. J. Heat Mass Transfer 38, 381±389.

Cercignani, C., 1988. The Boltzmann Equation and Its Applications. Springer, New York.
Chang, C.Y., Powell, R.L., 1994a. The rheology of bimodal hard-sphere dispersions. Phys. Fluids 6, 1628±1636.
Chang, C.Y., Powell, R.L., 1994b. Self-di�usion of bimodal suspensions of hydrodynamically interacting spherical

particles in shearing ¯ow. J. Fluid Mech 281, 51±80.
Chapman, S., Cowling, T.G., 1952. The Mathematical Theory of Non-Uniform Gases, 3rd ed. Cambridge

University Press, Cambridge, UK.
Cichocki, B., Felderhof, B.U., Hinsen, K., Wajnryb, E., Blawzdziewicz, J., 1994. Friction and mobility of many

spheres in Stokes ¯ow. J. Chem. Phys 100, 3780±3790.
Davis, R.H., Acrivos, A., 1985. Sedimentation of non-colloidal particles at low Reynolds numbers. Ann. Rev. Fluid

Mech 17, 91±118.

Drew, D.A., 1983. Mathematical modeling of two-phase ¯ow. Ann. Rev. Fluid Mech 15, 261±291.
Esmaeeli, A., Tryggvason, G., 1996. An inverse energy cascade in two-dimensional low Reynolds number bubbly

¯ows. J. Fluid Mech. 315±330.

Feng, J., Hu, H.H., Joseph, D.D., 1994. Direct simulation of initial value problems for the motion of solid bodies in
a Newtonian ¯uid, Part I: sedimentation. J. Fluid Mech 261, 95±134.

Feuillebois, F., 1984. Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech 139, 145±171.
Hansen, J.P., McDonald, I.R., 1990. Theory of Simple Liquids, 2nd ed. Academic Press, New York.

Hasimoto, H., 1959. On the periodic fundamental solutions of the stokes equations and their application to viscous
¯ow past a cubic array of spheres. J. Fluid Mech 5, 317±328.

Hetsroni, G., 1982. Handbook of Multiphase Systems. Hemisphere, Washington DC.

Hinch, E.J., 1977. An averaged-equation approach to particle interactions in ¯uid suspension. J. Fluid Mech 83,
695±720.

Hu, H.H., 1996. Direct simulation of ¯ows of solid±liquid mixtures. Int. J. Multiphase Flow 22, 335±352.

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831 829



Ishii, M., 1975. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris.

Je�rey, D.J., 1973. Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A 335, 355±367.

Johnson, A.A., Tezduyar, T., 1996. Simulation of multiple spheres falling in a liquid-®lled tube. Comp. Meth. Appl.

Mech. Engng 134, 351±373.

Johnson, A.A., Tezduyar, T., 1997. 3-D simulation of ¯uid-particle interactions with the number of particles

reaching 100. Comp. Meth. Appl. Mech. Engng 145, 301±321.

Jones, A.V., Prosperetti, A., 1985. On the suitability of ®rst-order di�erential models for two-phase ¯ow prediction.

Int. J. Multiphase Flow 11, 133±148.

Kaftori, D., Hetsroni, G., Banerjee, S., 1995a. Particle behavior in the turbulent boundary layer. Part I: motion,

deposition, and entrainment. Phys. Fluids 7, 1095±1106.

Kaftori, D., Hetsroni, G., Banerjee, S., 1995b. Particle behavior in the turbulent boundary layer. Part II: velocity

and distribution pro®les. Phys. Fluids 7, 1107±1121.

Ladd, A.J.C., 1988. Hydrodynamic interactions in a suspension of spherical particles. J. Chem. Phys 88, 5051±5063.

Ladd, A.J.C., 1990. Hydrodynamic transport coe�cients of random dispersions of hard spheres. J. Chem. Phys 93,

3484±3494.

Ladd, A.J.C., 1993. Dynamical simulations of sedimenting spheres. Phys. Fluids 5, 299±310.

Ladd, A.J.C., 1997. Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491±499.

Lamb, H., 1932. Hydrodynamics. Cambridge University Press, Cambridge, UK.

Landau, L., Lifshitz, E.M., 1969. Statistical Physics. Pergamon Press, Oxford.

Leighton, D., Acrivos, A., 1987. The shear-induced migration of particles in concentrated suspensions. J. Fluid

Mech 181, 415±439.

Lhuillier, D., 1992. Ensemble averaging in slightly non-uniform suspensions. Eur. J. Mech. B/Fluids 11, 649±661.

Lhuillier, D., NozieÁ res, P., 1992. Volume averaging of slightly non-homogeneous suspensions. Physica A181, 427±

440.

Marchioro, M., Prosperetti, A., 1999. Conduction in non-uniform composites. Proc. Roy. Soc. Lond., A455, 1483±

1508.

Marchioro, M., Tanksley, M., Prosperetti, A., 1999. Mixture pressure and stress in disperse two-phase ¯ows. Int. J.

Multiphase Flow, 25, 1395±1429.

Marchioro, M., Tanksley, M., Prosperetti, A., 2000. Flow of spatially non-uniform suspensions. Part II: Systematic

derivation of closure relations. Int. J. Multiphase Flow, submitted.

Martys, N., Bentz, D.P., Garboczi, E.J., 1994. Computer simulation study of the e�ective viscosity in Brinkman's

equation. Phys. Fluids 6, 1434±1439.

Mo, G., Sangani, A.S., 1994. A method for computing Stokes ¯ow interactions among spherical objects and its

application to suspensions of drops and porous particles. Phys. Fluids 6, 1637±1652.

Nott, P.R., Brady, J.F., 1994. Pressure-driven ¯ow of suspensions: simulation and theory. J. Fluid Mech 275, 157±

199.

Nunan, K.C., Keller, J.B., 1984. E�ective viscosity of a periodic suspension. J. Fluid Mech 142, 269±287.

Pan, Y., Banerjee, S., 1996. Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733.

Phillips, R.J., Armstrong, R.C., Brown, R.A., 1992. A constitutive equation for concentrated suspensions that

accounts for the shear-induced particle migration. Phys. Fluids A4, 30±40.

Prosperetti, A. 1998. Ensemble averaging techniques for disperse ¯ows. In: Drew, D., Joseph, D.D., Passman, S.L.

(Eds.), Particulate Flows: Processing and Rheology. Springer, Berlin, pp. 99±136.

Prosperetti, A., Jones, A.V., 1984. Pressure forces in disperse two-phase ¯ows. Int. J. Multiphase Flow 10, 425±440.

Russell, W.B., Saville, D.A., Schowalter, W.R., 1989. Colloidal Dispersions. Cambridge University Press,

Cambridge, UK.

Salacuse, J.J., Denton, A.R., Egelsta�, P.A., 1996. Finite-size e�ects in molecular dynamics simulations: Static

structure factor and compressibility. Part I: theoretical method. Phys. Rev E53, 2382±2389.

Sangani, A.S., Acrivos, A., 1982. Slow ¯ow through a periodic array of spheres. Int. J. Multiphase Flow 8, 343±360.

Sangani, A.S., Acrivos, A., 1983. The e�ective conductivity of a periodic array of spheres. Proc. Roy. Soc. Lond

A386, 263±275.

Sangani, A.S., Mo, G.B., 1996. An O�N � for Stokes and Laplace interactions of spheres. Phys. Fluids 8, 1990±2010.

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831830



Sangani, A.S., Mo, G.B., Tsao, H.K., Koch, D.L., 1996. Simple shear ¯ow of dense gas±solid suspensions at ®nite
Stokes numbers. J. Fluid Mech 313, 309±341.

Sangani, A.S., Yao, C., 1988. Bulk conductivity of composites with spherical inclusions. J. Appl. Phys 63, 1334±
1341.

Stewart, H.B., Wendro�, B., 1984. Two-phase ¯ows: models and methods. J. Comput. Phys 56, 363±409.

Studart, N., da Silveira, H.V., de Freitas, U., 1996. E�ective ®eld theory for hard-sphere ¯uids. Phys. Rev E53,
2350±2354.

Tanksley, M., Marchioro, M., Prosperetti, A., 1999. Average pressure and velocity ®elds in non-uniform

suspensions of spheres in Stokes ¯ow. J. Engng. Math., submitted.
Tezduyar, T.E., Mittal, S., 1994. Massively parallel ®nite element computation of incompressible ¯ows involving

¯uid-body interactions. Comp. Meth. Appl. Mech. Eng 112, 253±282.

Throop, G.J., Bearman, R.J., 1965. Numerical solution of the Percus±Yevick equation for the hard-sphere potential.
J. Chem. Phys 42, 2408±2411.

Torquato, S., 1987. Thermal conductivity of disordered heterogeneous media from the microstructure. Revs. Chem.
Eng 4, 151±204.

Torquato, S., Lee, S.B., 1990. Computer simulations of nearest-neighbor distribution function and related quantities
for hard-sphere systems. Physica A 167, 361±383.

Unverdi, S.O., Tryggvason, G., 1992. Computation of multi-¯uid ¯ows. Physica D 60, 70±83.

Weinbaum, S., Ganatos, P., Yan, Z.Y., 1990. Numerical multipole and boundary integral equation techniques in
Stokes ¯ow. Annu. Rev. Fluid Mech 22, 275±316.

Zhang, D.Z., Prosperetti, A., 1994a. Averaged equations for inviscid disperse two-phase ¯ow. J. Fluid Mech 267,

185±219.
Zhang, D.Z., Prosperetti, A., 1994b. Ensemble phase-averaged equations for bubbly ¯ows. Phys. Fluids 6, 2956±

2970.

Zhang, D.Z., Prosperetti, A., 1997. Momentum and energy equations for disperse two-phase ¯ows and their closure
for dilute suspensions. Int. J. Multiphase Flow 23, 425±453.

Zuzovsky, M., Adler, P.M., Brenner, H., 1983. Spatially periodic suspensions of convex particles in linear shear
¯ows. Part III: dilute arrays of spheres suspended in Newtonian ¯uids. Phys. Fluids 26, 1714±1723.

M. Marchioro et al. / International Journal of Multiphase Flow 26 (2000) 783±831 831


